
Explicit Binary Tree Codes with Polylogarithmic Size Alphabet

Gil Cohen
Princeton University
Princeton, NJ, USA
gilc@princeton.edu

Bernhard Haeupler
Department of Computer Science,

Carnegie Mellon University
Pittsburgh, NH, USA
haeupler@cs.cmu.edu

Leonard J. Schulman
California Institute of Technology

Pasadena, CA, USA
schulman@caltech.edu

ABSTRACT

This paper makes progress on the problem of explicitly constructing

a binary tree code with constant distance and constant alphabet

size.

For every constant δ < 1 we give an explicit binary tree code

with distance δ and alphabet size poly(logn), where n is the depth

of the tree. This is the first improvement over a two-decade-old con-

struction that has an exponentially larger alphabet of size poly(n).
As part of the analysis, we prove a bound on the number of

positive integer roots a real polynomial can have in terms of its

sparsity with respect to the Newton basisÐa result of independent

interest.

CCS CONCEPTS

· Theory of computation → Pseudorandomness and deran-

domization; Error-correcting codes; Complexity classes; Gener-

ating random combinatorial structures;

KEYWORDS

tree codes, sparse polynomials, explicit constructions

ACM Reference Format:

Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman. 2018. Explicit

Binary Tree Codes with Polylogarithmic Size Alphabet. In Proceedings of

50th Annual ACM SIGACT Symposium on the Theory of Computing (STOC’18).

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3188745.3188928

1 INTRODUCTION

This paper makes progress on the problem of explicitly constructing

a binary tree code with constant distance and constant alphabet

size.

Tree codes are a powerful but so-far elusive combinatorial struc-

ture, defined and proven to exist by [46, 48] as a key ingredient for

achieving a constant rate interactive coding scheme. Tree codes are

the central object for encoding information in the interactive cod-

ing theory which developed from the initial papers. They remain

a crucial building block in almost all interactive coding schemes

[1, 4, 5, 5ś7, 7, 9ś11, 20, 21, 23, 24, 31, 35, 42, 49]. The absence of an

explicit construction that is also efficiently decodable is the only

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC’18, June 25ś29, 2018, Los Angeles, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00
https://doi.org/10.1145/3188745.3188928

reason why most of these schemes are computationally inefficient,

requiring exponential-time computations. Other works have in-

vested significant effort in avoiding the use of (large) tree codes,

often at a considerable loss in the fraction or generality of errors

that can be tolerated [5ś8, 21, 23, 26, 30, 33]. We refer to the excel-

lent survey by Gelles [19] for an in-depth account of the role tree

codes hold in the area of interactive coding theory.

In addition, tree codes have important uses as streaming codes

for both Hamming errors [17] and synchronization errors [10, 27ś

29]. In control theory, although mostly unknown to the computer

science community, tree codes are closely connected to anytime

reliable codes that are necessary to controlling and stabilizing sys-

tems over unreliable channels [25, 32, 43ś45, 52, 53]; there, too, the

absence of explicit constructions of tree codes was the motivation

for an elaborate work-around for certain control applications [39].

Tree codes have also found surprising application in metric embed-

dings [34] and complexity theory [14, 15].

Let us define tree codes and explain why one should think of

them as an online version of a regular error correcting block code: A

tree code consists of a complete rooted binary tree (either infinite or

of finite depth n) in which each edge is labeled by a symbol from an

alphabet Σ. There is a natural one-to-one mapping assigning each

binary string s to a path starting at the root, where s simply indicates

which child is taken in each of the steps. For a tree code, such a path

naturally maps to a string over the alphabet Σ, which is formed by

concatenating the symbols along the path. This way a tree code T

encodes any binary string s into an equally long string T (s) over Σ.
This encoding has an online characteristic because the encoding

of any prefix does not depend on later symbols. In particular, any

two distinct strings that agree in their first k symbols also have

encodings that agree in their first k symbols. A tree code is said to

achieve distance δ ≥ 0 if the encodings of any two strings differ in at

least a δ -fraction of the positions after their first disagreement. The

rate of a tree code is 1
log2 |Σ |

. A tree code is said to be asymptotically

good if it achieves both constant distance δ > 0 and a constant rate,

namely, the alphabet size |Σ| = O(1).

Three different proofs were provided in [46, 48], showing that

for any δ < 1 there exists a binary tree code with a constant-size

alphabet achieving distance δ . All of these proofs, as well as a later

quantitative improvement by Peczarski [40], rely on the probabilis-

tic method. Interestingly however, in contrast to conventional error

correcting block codes, a constant-size-alphabet random tree code

is not asymptotically good and has a distance of zero, with high

probability.

The problem of giving an explicit construction of asymptotically

good tree codes has drawn substantial attention, but has endured

535

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman

as a difficult challenge.1 Technically, for a depth n tree code to

be explicit, we require that there exist a deterministic algorithm

running in time poly(n) which on input s ∈ {0, 1}n′ (n′ ≤ n),
outputs the label of the last edge on the path s . We remark that

one of the existence proofs is based on the Lovász local lemma [16]

but the algorithmic LLL [12, 38] does not yield explicit tree codes

as it must construct the entire exp(n)-size tree. In fact, for explicit

constructions not much has been known beyond a construction of

Evans, Klugerman and Schulman [47] (dating to 1994) that provides

a tree code with alphabet size poly(n). Pudlák [41] studies sufficient

and necessary structural results for linear (MDS) tree codes and

provides a construction with large arity. Moore and Schulman gave

a candidate construction [37], but its distance property relies on

an open conjecture about certain exponential sums. A tree code

construction which reduces the brute-force time of encoding and

decoding from exponential, i.e., exp(n), to sub-exponential, i.e.,

exp(nε), at the cost of an alphabet size exp(1/ε), was given by

Braverman [8].

1.1 Our Results

In this work we obtain the first proven improvement over the

two-decade-old construction of [47] by giving an explicit binary

tree code with constant distance and an exponentially smaller, i.e.,

polylogarithmic, alphabet size.

Theorem 1.1. For every constant δ < 1 and integer n ≥ 1 there

exists an explicit binary tree code TC : {0, 1}n → Σ
n with distance δ

and |Σ| = (logn)O (1).

Put differently, Theorem 1.1 gives a binary tree code with rate

Ω(1/log logn) and distance δ . We point out that our techniques

readily yield a depth n tree code that can be constructed in time

exp(nε)with alphabet size poly(1/ε). This should be compared with

an alphabet size exp(1/ε) that was obtained by Braverman [8] under

the same running-time restriction.

We prove Theorem 1.1 in two steps. First, we construct a tree

code over the integers as given in Theorem 1.2 below. This tree

code has the advantage of being infinite. We then reduce the input

alphabet to Boolean.

Theorem 1.2. For every constant δ < 1 there exists an explicit

tree code TCZ : Z
N → ZN 2 with distance δ . Further, for every z =

(zt)t ∈N ∈ ZN and t ∈ N,

|TCZ(z)t | ≤ 2O (t 2) · (max (|z0 |, . . . , |zt |))O (1)
.

Our construction is at its cleanest form when δ = 1/2. In such

case, the dependence on t is also better. Throughout this section we

focus on this tree code whose parameters are given in the following

theorem.

Theorem 1.3. There exists an explicit tree code TCZ : Z
N → Z

N

with distance 1/2. Further, for every z = (zt)t ∈N ∈ ZN and t ∈ N,
|TCZ(z)t | ≤ 2t ·max

(

z20, . . . , z
2
t

)

.

1Wigderson in his new book “Mathematics and Computationž calls it łthe most elegant
open problem of [the] theory [of interactive coding]ž [55, page 202, Open Problem 15.34].
2Throughout the paper, it will be convenient to use the notation N = {0, 1, 2, . . . }.

Wewish to give some remarks regarding the bound on |TCZ(z)t |
that is guaranteed by Theorem 1.3. Assume that |zt | ≤ m for all

t . Theorem 1.3 gives a bound of 2tm2 on the t ’th output symbol.

This should be compared with the trivial bound ofmt and with the

boundmlog t that is obtained by adapting the technique of [47] to

tree codes over the integers. Although our bound has an exponential

dependence on t , the two parametersm and t are decoupled and so

one can take t super-constant while keeping the bound polynomial

in m. In the second step of our construction, we show that this

property suffices to obtain the improved binary tree code claimed

by Theorem 1.1 with distance 1/2. The same argument shows how

Theorem 1.2 implies Theorem 1.1 for any constant distance δ < 1.

The proof of Theorem 1.3 is obtained by adapting the Reed

Solomon polynomial interpolation framework to the online setting.

We give an overview of the proof in Section 2 and the formal proof

is the content of Section 5. To analyze the distance, we prove a

bound on the number of distinct integral roots a real polynomial

can have in terms of its sparsity in a certain basisśa result of inde-

pendent interest on which we elaborate on in Section 1.1.1 below.

The alphabet reduction technique we use to deduce Theorem 1.1 is

covered in Section 6. Finally, in Section 7, we prove Theorem 1.2.

1.1.1 A Bound on the Number of Integral Roots via Sparsity.

The fundamental theorem of algebra asserts that a degree d > 0

polynomial with complex coefficients has exactly d complex roots

when counted with multiplicities. More generally, over any field F,

a degree d > 0 polynomial f ∈ F[x] has at most d roots in F (and

exactly d roots in the algebraic closure of F).

The sparsity of a polynomial, however, cannot be used to bound

the number of its distinct roots. There are natural examples of

sparse polynomials with many roots even in the base field, e.g.,

xp − x in Fp [x]. Nevertheless, for the analysis of our tree code

construction, we provide a meaningful bound on the number of

positive integer roots (that is, roots in N) a real polynomial can

have in terms of its sparsity.

Unlike the notion of degree, sparsity is, of course, basis depen-

dent. The basis for which our bound holds is not the standard

basis {1,x ,x2, . . .} but rather the Newton basis which consists of

polynomials of the form
(x
k

)

∈ R[x] for k ∈ N, where
(

x

k

)

=

x(x − 1) · · · (x − (k − 1))
k!

.

It is easy to verify that for everyd ∈ N, the set {
(x
k

)

| k = 0, 1, . . . ,d}
forms a basis for the space of univariate real polynomials of degree

at most d .

Of course, with respect to this basis, the sparsity cannot be taken

as a bound on the number of distinct roots a polynomial can have.

Indeed, for any d ∈ N, consider the degree d polynomial
(x
d

)

which

has sparsity s = 1 in the Newton basis. Evidently,
(x
d

)

has d distinct

roots at x = 0, 1, . . . ,d−1. Thus, one cannot hope to prove a general
bound on the number of roots in terms of sparsity even when

restricting to integral roots and not accounting for multiplicities.

Consider a polynomial with sparsity s = 2 in the Newton basis.

Such a polynomial has the form

f (x) = γ
(

x

c

)

+ δ

(

x

d

)

,

536

Explicit Binary Tree Codes with Polylogarithmic Size Alphabet STOC’18, June 25–29, 2018, Los Angeles, CA, USA

where 0 ≤ c < d are integers and γ ,δ are nonzero real numbers.

Clearly, 0, 1, . . . , c − 1 are all roots of f , and c can be taken much

larger than 2 ś the sparsity of f . More generally, if f is a polynomial

with sparsity s and c = c(f) is the least integer such that
(x
c

)

appears

in the expansion of f in the Newton basis then f will surely have

0, 1, . . . , c − 1 as its roots. Again, it may be the case that c ≫ s .

We prove that but for these c “trivialž integral roots, f has at

most s − 1 roots in N. This holds regardless of the degree of f . More

precisely, we prove the following lemma which can be interpreted

as an uncertainty principle for the Newton basis.

Lemma 1.4. Let f ∈ R[x] be a nonzero polynomial of sparsity s ≥ 1

in the Newton basis. Let c ≥ 0 be the least integer such that f (c) , 0.

Then, f has at most s − 1 distinct roots in [c,∞) ∩ Z.
Observe that the restriction to integral roots is necessary, that

is, one cannot strengthen the result by arguing about non-integral

roots in [c,∞). To see this, take any integer d > 1 and consider the

polynomial with integral coefficients fC (x) =
(x
1

)

+ C
(x
d

)

, where

C ∈ N is chosen sufficiently large. The polynomial fC has sparsity 2,

degree d and, with the notation above, c(fC) = 1. However, fC has

the same roots as fε (x) = ε
(x
1

)

+

(x
d

)

where ε = 1/C ≈ 0. However,

fε (x) ≈
(x
d

)

and so for ε small enough in absolute value, fε has d −1

distinct roots in [1,∞).
We prove Lemma 1.4 in Section 4. The proof makes use of the

beautiful Gessel-Viennot Lemma (see Lemma 3.9). Given the useful-

ness of the degree bound on the number of roots, we believe that

Lemma 1.4 should find further applications.

2 OVERVIEW OF THE CONSTRUCTION

The polynomial interpolation framework is at the heart of several

important constructions of error correcting block codes such as

the Reed Solomon code. Our construction is based on identifying

a suitable adjustment of the polynomial interpolation framework

to the online setting. To motivate our construction, we start by

highlighting the difficulties in pursuing such an approach. To this

end, we recall the definition of the Reed Solomon code. Let n be

an integer. Assume, for simplicity, that n is prime, and let F be

the field of n elements. For an integer k ≤ n, the Reed Solomon

code RS : Fk → F
n is defined as follows. Define the polynomial

fm (x) = ∑k−1
i=0 mix

i ∈ F[x]. The encoding of m is defined by

RS(m) = (fm (0), fm (1), . . . , fm (n − 1)).
As fm is linear inm, the analysis of the distance of RS proceeds

by proving an upper bound on the number of zero entries of a

codeword that corresponds to a nonzero message. By construction,

these entries correspond to the number of distinct roots of fm in F.

Here is where the degree bound on the number of roots of fm is

invoked.

An obvious difficulty in adapting the above idea to the construc-

tion of tree codes arises from the latter’s online nature. As we do

not have the entire message available to us up until the very end,

there is no clear sense as to which polynomial we should work with.

However, the challenge is more significant. Even given the entire

message, one still needs to gain nonzero output symbols starting

from the index of the first nonzero entry of the message. That is,

not only that one has to work with partial information, a tree code

must also gain distance as soon as a disagreement, or “splitž, occurs

and to keep the distance above a certain threshold from that point

on. Restricting to the Reed Solomon construction, this means that

even given the messagem, the polynomial fm defined above should

somehow be evaluated on a carefully chosen sequence of points in

the field. We do not know how to implement such an approach or

even if it is possible in principle. Anyhow, one does not have the

message in its entirety.

Having these difficulties in mind motivates our construction

which we present next. Although our construction is based on poly-

nomial interpolation, and so it is inherently algebraic, it can be

motivated both using a combinatorial reasoning and from an alge-

braic perspective. We start by presenting the combinatorial point

of view in Section 2.1. We then discuss the algebraic perspective in

Section 2.2. The formal proof, given in Section 5, is presented and

analyzed only via the algebraic perspective, nevertheless, we be-

lieve that the combinatorial point of view gives a natural motivation

for our construction.

2.1 The Combinatorial Perspective

In this section we motivate and describe the tree code construction

TCZ : Z
N → Z

N from Theorem 1.3. Let z = (zt)t ∈N ∈ ZN be a

message that we want to encode. For t ∈ N, define ft ∈ R[x]
to be the polynomial of least degree such that ft (i) = zi for all

i ∈ {0, 1, . . . , t}. Note that ft is fully determined by z0, . . . , zt .

Further, observe that ft is linear in z. Therefore, so long as we

define TCZ(z)t as a linear combination of the evaluation of the

polynomials f0, . . . , ft on fixed points, it will follow that TCZ(z)t =
TCZ(z′)t if and only if TCZ(z−z′)t = TCZ(0̄)t = 0; i.e., for purposes

of distance analysis, it suffices to compare every nonzero message

z against the all-zeros message.

To recap, while the Reed Solomon code interprets the message

as a polynomial, in our construction (which has not yet been pre-

sented) every prefix of the message is interpreted as a polynomial,

and so z, chosen by the “adversaryž, induces an infinite sequence

of polynomials f0, f1, f2,

Consider a scenario in which the adversary makes it so that

ft = ft+1 = · · · = ft+ℓ . Intuitively, such a scenario is favorable for

us. Indeed, one can imagine how useful it would be if the adversary

is committed to a single polynomial f for a long interval of time

while (just as in Reed Solomon) outputting evaluations of f in the

interval. In some sense, it is as if the tree code is only required to

work against an off-line input on that interval; the fundamental

theorem of algebra can come into play and prevent having many 0s

in the output during this interval. Thus, a natural idea is to penalize

the adversary when switching to a new polynomial from time t − 1

to time t . This can be done by outputting, at time t , the value

δt = ft (t) − ft−1(t).
In control theory, onewould callδt the “innovationž. A complexity-

theoretic point of view would interpret δt as a consistency checking

procedure. Indeed, unless the adversary sticks to his polynomial

ft−1 at time t , he pays in distance as then δt , 0. This consistency

checking symbol at time t is concatenated with ft (t), i.e., zt . To
summarize, we define TCcomb : Z

N → (Z2)N by 3

TCcomb(z)t = (zt ,δt).
3Note that the output symbols are pairs of integers rather than integers as stated in
Theorem 1.3. This, of course, is a non-issue and is only meant for a cleaner presentation.

537

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman

It is not immediately clear from this representation why δt should

be an integer but as it turns out, that is the case and |δt | can be

bounded as we discuss at the end of Section 2.2.

How large is the distance of TCcomb? It seems that an adversary

that sticks to a polynomial for not-too-long intervals may pay very

little as we do not gather sufficient amount of information during

a short interval. On the other hand, it is intuitive that something

is gained by this approach. How would an adversary work against

TCcomb?

A potential attack. One attack might work as follows. Fix some

d ≥ 1. The adversary will choose z0, . . . , zd such that the degree d

polynomial fd has roots at d + 1, . . . , 2d . Now by choosing just one

new nonzero value z2d+1, the adversary obtains a new polynomial

f2d+1 of degree 2d + 1 which shares the already-recorded d roots

but also has d + 1 new roots, potentially at 2d + 2, . . . , 3d + 2; the

adversary then uses z2d+2 = . . . z3d+2 = 0 and in this case we have

δ2d+2 = . . . = δ3d+2 = 0. The adversary can again use a nonzero

z3d+3, obtaining a new polynomial f3d+3 with d + 2 new roots,

potentially at 3d + 4, . . . , 4d + 5, and the adversary then makes the

choice z3d+4 = . . . = z4d+5 = 0. If this process can be repeated

in this manner (i.e., if the described polynomials exist), the result

will be a branch of the tree code which at depth ℓ has weight only

O(
√
ℓ).

Even if there are no polynomials that perfectly interpolate as

required by the above attack, it is not obvious that one can rule

out a quantitatively-relaxed version of such an attack. What one

can see however, is that the adversary cannot beat Ω(
√
ℓ): after

the s’th nonzero value, say it is zt , there cannot be a run of zeros

0 = ft (t + 1) = ft (t + 2) = . . . = ft (t + s) as this would contradict

Lemma 3.9, which establishes that the relevant minor in the linear

transformation is nonsingular.

Though certainly a nontrivial bound, an Ω(1/
√
ℓ) distance is far

from the constant distance that we are shooting for. Interestingly,

TCcomb has, in fact, distance 1/2 ! In particular, the above attack

is far from feasible. To prove that, we consider an algebraic point

of view on the construction of TCcomb. Taking the algebraic per-

spective, we can prove that the adversary has a budget of roots that

is bounded by the sparsity (with respect to a certain basis) of the

polynomials rather than by their degree.

2.2 The Algebraic Perspective

So far, when working with the polynomials (ft)t , we did not pay

attention to the basis in which the polynomials are represented.

Generally, the polynomial interpolation framework works over

any basis as the degree, which is typically used in the analysis,

is basis invariant. However, for our purpose, the standard basis

{1,x ,x2, . . .} has the following drawback. Let y0, . . . ,yn ∈ R. Let
f (x) = ∑n

i=0 aix
i be the least degree polynomial that interpolates

on the points (0,y0), (1,y1), . . . , (n,yn). Then generally, given a new
point (n + 1,yn+1), the least degree polynomial, д(x) = ∑n+1

i=0 bix
i ,

that interpolates on (0,y0), . . . , (n + 1,yn+1) will have a completely

different sequence of coefficients (i.e., ai , bi).

By contrast, using the Newton basis, the coefficients that were

already “recordedž stay intact given the new point (n + 1,yn+1).
More precisely, if f (x) = ∑n

i=0 γi
(x
i

)

then д(x) = f (x) + γn+1
(x
n+1

)

for some γn+1 ∈ R. Classically, this fact makes the Newton ba-

sis attractive for numerical stability and was used for obtaining

structural results for polynomials [13, 50, 54]. For constructing tree

codes, this property is attractive as it means that for every t , the

coefficient γt is determined by y0,y1, . . . ,yt .

The above discussion suggests a second construction of tree

codes overZ. Letγt be the coefficient of
(x
t

)

in the expansion of ft , as

defined in Section 2.1. We define the tree code TCalg : Z
N → (Z2)N

by

TCalg(z) = (zt ,γt).

Interestingly, one can show that γt = δt for every t and so

TCcomb and TCalg are one and the same! The algebraic point of

view on the tree code will allow us to prove a bound of 1/2 on the

distance as we now explain.

Let c be the least integer such that zc , 0. Let ℓ ≥ 1 and set

t = c + ℓ− 1. Observe that the number of non-zeros in the sequence

γ0,γ1, . . . ,γt is precisely the sparsity of ft in the Newton basis.

This, together with the fact that for every i ≤ t , zi = ft (i), implies

that to “breakž the construction TCalg, the adversary must come

up with a sparse polynomial ft that has many roots in I = {c, c +
1, . . . , t}. Indeed, if ft is not sparse, then many of the γ -entries of

(TCalg(z)i)i ∈I will be nonzero. On the other hand, if ft has only

few roots in I then many of the z-entries are nonzero.

To give the quantitative bound we invoke Lemma 1.4 which

implies that if the sparsity of ft is s then there can be at most

s − 1 zeros among the z-entries of {TCalg(z)i }i ∈I . So the combined

number of nonzero integers among the 2ℓ integers in (TCalg(z)i)i ∈I
is at least ℓ + 1. Thus, at least half of the pairs are nonzero pairs,

establishing a distance of 1/2.
Another issue that can be handled via the algebraic perspective

is related to the integrality of the output symbols. The symbol zt is

clearly an integer. However, it is not a priori clear that γt = δt is an

integer. The Newton basis has another useful property we useÐif

z0, . . . , zt are all integers, so are the coefficients γ0, . . . ,γt . Note

that this property does not hold for the standard basis. Moreover,

there is a closed formula for γt as a function of z0, . . . , zt (see

Lemma 3.8) which allows us to prove the desired bound on |γt |.

2.3 Tree Codes for any Distance δ < 1

It is fairly straightforward to adapt the ideas described above to

obtain any distance δ < 1. A natural strategy is to use more evalua-

tion points. This idea, however, should be executed with some care.

In this section we sketch how to obtain distance δ = 2/3. The idea
can be easily generalized to yield any distance δ < 1 (Section 7).

Let us suggestively denote the inputmessage by z = (z0, z2, z4, . . .) ∈
Z
2N. As before, we define a sequence of real polynomials f0, f1, f2,

However, to obtain the improved distance, we also define a sequence

of integers z1, z3, z5, . . . inductively on t ∈ N, as follows. For even t
we define ft , as before, to be the least degree real polynomial such

that ∀i ∈ {0, 1, . . . , t}, ft (i) = zi . We then define ft+1 = ft and

compute zt+1 = ft+1(t + 1).
For t ∈ N, let γt be the coefficient of

(x
t

)

in the expansion of ft .

We define TC
2/3
alg

: Z2N → (Z3)N by

TC
2/3
alg

(z0, z2, z4, . . .)t = (γ2t , z2t , z2t+1).

538

Explicit Binary Tree Codes with Polylogarithmic Size Alphabet STOC’18, June 25–29, 2018, Los Angeles, CA, USA

One can show that TC
2/3
alg

is a linear online function. To argue

about the distance, let c be the least integer such that z2c , 0. Let

ℓ ≥ 1. Set t = c + ℓ − 1 and denote I = {c, c + 1, . . . , t}. Observe
that γi = 0 for every odd i , and so the number of non-zeros in the

sequenceγ0,γ2, . . . ,γ2t is the sparsity of f2t in the Newton basis. By

Lemma 1.4, among the evaluation points {2c, 2c + 1, . . . , 2t , 2t + 1},
at most s − 1 are roots of f2t . Thus, the number of nonzero triplets

among (TC2/3
alg

(z)i)i ∈I is at least

s + 2ℓ − (s − 1)
3

≥ 2

3
ℓ,

proving that the distance is 2/3.
One concern that must be addressed is the bound on the γ sym-

bols. Unlike the 1/2 distance construction, now γt depends on the

computed value zt−1 which, in turn, depends on γt−2. Thus, po-
tentially, the γ symbols can grow much faster and, indeed, the

bound we give for distance 2/3 is weaker than the corresponding

bound for distance 1/2. Nevertheless, as it turns out, for deducing
Theorem 1.1, the weaker bound suffices. Further, the bound does

not degrade substantially when considering any constant distance

2/3 < δ < 1.

3 PRELIMINARIES

Let n ≥ 1 be an integer and Σ some (finite or infinite) set. For a

string x = (x1, . . . ,xn) ∈ Σ
n and integers 1 ≤ a ≤ b ≤ n, we let

x[a,b] denote the substring (xa , . . . ,xb). If σ ∈ Σ then σn denotes

the string (σ , . . . ,σ) ∈ Σ
n . Given x ,y ∈ Σ

n , we write dist(x ,y) for
their Hamming distance.

For an integer n ≥ 1 write [n] for {1, 2, . . . ,n}. We use the

convention that 0 is a natural number and denote N = {0, 1, 2, . . .}.
We also follow the standard convention that

(a
b

)

= 0 for integers

0 ≤ a < b.

3.1 Error Correcting Block Codes

Definition 3.1. A function ECC : Σk
in

→ Σ
n
out is an error cor-

recting block code with distance δ if for every distinct x ,y ∈ Σ
k
in
,

dist(ECC(x), ECC(y)) ≥ δn. The rate of ECC is given by

(k log2 |Σin |)/(n log2 |Σout |).

For the proof of Theorem 1.1, it is convenient to consider error

correcting block codes whose output length is shorter than their

input length and with output alphabet consisting of binary strings

of a certain length. We make use of the following construction of

error correcting block codes. The construction and its proof are

given in Appendix A.

Lemma 3.2. For every constant 0 < δ < 1 and constant integer

t ≥ 1 there exists an integer c = c(t ,δ) such that for every large

enough integer n there exists an explicit error correcting block code

ECC : {0, 1}n → ({0, 1}c)n/t with distance δ .

3.2 Tree Codes

Tree codes, as their name suggest, are trees with certain distance

properties. However, in this paper, we use an equivalent definition

of tree codes that more directly specifies their online characteristic

compared to the one given in the original papers [46, 48] and, in

particular, does not involve trees. This will be more convenient for

presenting our construction.

Definition 3.3. A function f : Σn
in
→ Σ

n
out is said to be online if for

every i ∈ [n] and x ∈ Σ
n
in
, f (x)i is determined by x1, . . . ,xi .

Definition 3.4. For a pair of distinct x ,y ∈ Σ
n , we define split(x ,y)

as the least integer s ∈ [n] such that xs , ys .

Definition 3.5 ([46, 48]). An online function TC : Σn
in

→ Σ
n
out is

a tree code with distance δ if for every distinct x ,y ∈ Σ
n
in
, with

s = split(x ,y), and every ℓ ∈ {0, 1, . . . ,n − s},

dist
(

TC(x)[s,s+ℓ], TC(y)[s,s+ℓ]
)

≥ δ (ℓ + 1).

We refer to n as the depth of TC. We refer to Σin, Σout as the input

alphabet and output alphabet, respectively.

We remark that the terms depth and split are coming from the

original point of view of tree codes as trees with certain distance

properties. The depth is simply the depth of the tree and the split

is the level at which the pair of paths diverge. We borrow this

terminology even though we do not explicitly view tree codes as

trees in this work. We are interested in some further properties of

tree codes.

Definition 3.6. Let TC : Σn
in
→ Σ

n
out be a tree code.

• We say that TC is a binary tree code if Σin = {0, 1}.
• Assume Σin, Σout are rings. TC is said to be linear if for every

t ∈ [n], TC(x)t is a linear function of x .

• We say that TC is explicit if it can be evaluated on every input

m ∈ Σ
n
in
in polynomial time in the bit complexity ofm.

We also consider the stronger notion of infinite tree codes, as

was done in the original papers [46, 48]. For a set Σ, we denote the

set of all sequences (xi)i ∈N, where xi ∈ Σ, by Σ
N. One can extend

the notion of a split and of online functions to functions of the form

f : ΣN
in
→ Σ

N

out in the natural way.

Definition 3.7 ([46, 48]). An online function TC : ΣN
in

→ Σ
N

out is

a tree code with distance δ if for every distinct x ,y ∈ Σ
N

in
, with

s = split(x ,y), and every integer ℓ ≥ 0,

dist
(

TC(x)[s,s+ℓ], TC(y)[s,s+ℓ]
)

≥ δ (ℓ + 1).

Note that an infinite tree code with distance δ yields, for every

integer n ≥ 1, a tree code of depth n with distance δ . We extend,

in the natural way, the property of linearity for infinite tree codes.

We say that an infinite tree code is explicit if for every t ∈ N, the
restriction of TC to its first t coordinates is explicit as a finite tree

code. Such a restriction is well-defined as TC is an online function.

3.3 The Newton Basis

For k ∈ N, the Newton polynomial
(x
k

)

∈ R[x] is defined by
(

x

k

)

=

x(x − 1) · · · (x − (k − 1))
k!

.

As mentioned, {
(x
k

)

}n
k=0

is a basis for the space of polynomials of

degree at most n, over R. In fact any function f : N → R can be

expanded as a pointwise-converging power series over this basis.

The following lemma gives a formula for the coefficients of the

expansion.

539

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman

Lemma 3.8. Let f : N→ R. Then, for x ∈ N,

f (x) =
x
∑

k=0

γk

(

x

k

)

=

∑

k≥0
γk

(

x

k

)

(3.1)

where

γk =

k
∑

i=0

(−1)k−i
(

k

i

)

f (i) =
∑

i≥0
(−1)k−i

(

k

i

)

f (i).

Furthermore, if f ∈ R[x] is a polynomial of degree n then it equals

the sum of the first n + 1 terms of expansion (3.1).

This is simply the inversion formula for a triangular matrix; for

a proof see, e.g., Appendix A in [13].

3.4 The Gessel-Viennot Lemma

Our analysis relies on the following corollary of the beautiful lemma

of Gessel and Viennot [22], based on an idea of Lindström [36]. See

also [2], Chapter 5.4 or [3], Chapter 25.

Lemma 3.9 ([22], Corollary 2). Let 0 ≤ a1 < a2 < · · · < an and

0 ≤ b1 < b2 < · · · < bn be integers. Define the n × n matrix M by

Mi, j =
(ai
bj

)

. If ai ≥ bi for each i ∈ [n] then detM , 0.

4 A BOUND ON THE NUMBER OF INTEGRAL

ROOTS VIA SPARSITY

Proof of Lemma 1.4. The proof is by contradiction. Let s ≥ 1

be least integer such that there is a counterexample: a polynomial

f ∈ R[x] with sparsity s , specified by integers 0 ≤ c1 < · · · < cs
and non-zero real numbers γ1, . . . ,γs such that

f (x) =
s
∑

i=1

γi

(

x

ci

)

(note that c = c1), and such that there exist integers ti with c ≤
t1 < · · · < ts such that all f (ti) = 0. Necessarily s > 1 as the case

s = 1 merely reflects that
(x
c

)

, 0 for x ≥ c .

Now we argue that all tj > c j ; This clearly holds for j = 1

as f (c1) = γ1 , 0. By way of contradiction, let j ≥ 2 be the

least counterexample. Then, tj−1 < tj ≤ c j . By Lemma 3.8, the

polynomial
∑j−1
i=1 γi

(x
ci

)

agrees with f on {0, . . . , c j − 1}, so it has

roots t1, . . . , tj−1 (all > c1) and sparsity j − 1; since j − 1 ≤ s − 1 < s ,

this contradicts the minimality of f .

Finally, consider the s × s matrix A with entries Ai, j =
(ti
c j

)

for

i, j ∈ [s]. Let γ ∈ Rs be the vector with entries γj . Then f (ti) =
(Aγ)i so, all ti being roots, Aγ = 0̄. However, since c1 < · · · < cs ,

t1 < · · · < ts , and all c j < tj , the hypothesis of Lemma 3.9 is met

for A and so det(A) , 0, a contradiction to γ , 0̄. �

5 INFINITE TREE CODES OVER THE

INTEGERS

In this section we prove Theorem 1.3. We start by defining the

construction of TCZ.

The construction of TCZ. Define the function TCZ : Z
N → (Z2)N

as follows. For z = (zt)t ∈N ∈ ZN let f : N → N be such that

f (t) = zt for all t ∈ N. By Lemma 3.8, one can expand f in the

Newton basis

f (x) =
∑

t ∈N
γt

(

x

t

)

.

For t ∈ N, define TCZ(z)t = (zt ,γt) .

Analysis. By Lemma 3.8, for all t ∈ N, γt is a Z-linear combina-

tion of z0, . . . , zt and so TCZ is a linear online function with the

asserted range. For t ∈ N, definemt = max (|zi | : i ∈ {0, 1, . . . , t}).
By Lemma 3.8,

|γt | ≤
t
∑

i=0

(

t

i

)

|zi | ≤ 2tmt

which proves the asserted bound on the output symbols.

We turn to analyze the distance of TCZ. As TCZ is linear, it

suffices to consider a nonzero sequence z = (zt)t ∈N. Assume that

c ∈ N is the least integer such that zc , 0. Let ℓ ≥ 0. Set t = c + ℓ

and define I = {c, c + 1, . . . , t}. Let ft ∈ R[x] be the polynomial

ft (x) =
t
∑

i=0

γi

(

x

i

)

.

Observe that for every i ∈ I , the first entry of the pair TCZ(z)i
equals zi = f (i) = ft (i). Let s be the sparsity of ft in the Newton

basis. Note that precisely s of the pairs (TCZ(z)i)i ∈I have a nonzero
second entry. On the other hand, by Lemma 1.4, ft has at most s − 1

roots in I . Hence, the number of indices i ∈ I for which the first

entry of TCZ(z)i is 0 is bounded above by s − 1. Thus, the number

of indices i ∈ I for which TCZ(z)i is nonzero (as a pair) is bounded

below by

max (s, ℓ + 1 − (s − 1)) ≥ ℓ + 1
2
.

This completes the proof of Theorem 1.3.

We remark that obtaining a construction with output symbols

that are bounded by poly(t) rather than the exponential dependence
that was obtained above, would yield asymptotically good binary

tree code.

6 BINARY TREE CODES WITH

POLYLOGARITHMIC SIZE ALPHABET

In this section we prove Theorem 1.1. We do so for distance δ = 1/3
based on Theorem 1.3. In Section 7, we explain how to achieve any

distance δ < 1 based on Theorem 1.2. We start by deducing the

following corollary from Theorem 1.3.

Corollary 6.1. For every integer ℓ ≥ 1 there exists an explicit tree

code

TCℓ :
(

{0, 1}ℓ
)ℓ

→
(

{0, 1}3ℓ
)ℓ

with distance 1/2.

We remark that by using Pudlák’s construction ([41], Lemma 6.1),

one can obtain an explicit tree code TC : ({0, 1}ℓ3)ℓ → ({0, 1}O (ℓ3))ℓ
with constant distance. This construction too would have sufficed

in place of Gessel-Viennot as a starting point for the proof of Theo-

rem 1.1, albeit with weaker parameters.

540

Explicit Binary Tree Codes with Polylogarithmic Size Alphabet STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Proof of Corollary 6.1. The tree code TCℓ is obtained by re-

stricting TCZ, defined in Section 5, to its first ℓ coordinates where,

for an integer b, we identify {0, 1}b with {0, 1, . . . , 2b − 1}.
It will be more convenient to start the index set of TCℓ from

1 rather than 0 as was done in TCZ. Note that the input symbols,

when represented as integers, are bounded by 2ℓ − 1. Therefore, by

Theorem 1.3, for every t ∈ [ℓ], the t ’th output symbol is bounded

in absolute value by

2t−1(2ℓ − 1)2 ≤ 2ℓ−1(2ℓ − 1)2 ≤ 23ℓ−1 − 1,

and so 3ℓ bits suffice to represent the output symbols of TCZ, in-

cluding the sign of γt . Thus TCℓ inherits the distance 1/2 bound
from TCZ. �

For the proof of Theorem 1.1, it will be convenient to introduce a

relaxed notion of tree codes whichwe call lagged tree codes. Roughly,

these are tree codes that are only required to gain distance after

some lag from the split.

Definition 6.2. An online function TCLag : Σn
in
→ Σ

n
out is a lagged

tree code with distance δ and lag L if for every distinct x ,y ∈ Σ
n
in
,

with s = split(x ,y), and every integer L ≤ ℓ ≤ n − s ,

dist
(

TCLag(x)[s,s+ℓ], TCLag(y)[s,s+ℓ]
)

≥ δ (ℓ + 1).

We borrow the terminology used for tree codes for lagged tree

codes. That is, we refer to n as the depth of TCLag and to Σin, Σout

as the input alphabet and output alphabet, respectively. We also

extend Definition 3.6 to lagged tree codes in the natural way. Note

that a tree code is a lagged tree code with lag L = 0. At the other

extreme, using error correcting block codes, it is not hard to obtain

explicit binary lagged tree codes with a trivial lag of ℓ (that is,

the guarantee on the distance holds only after reading the entire

codeword), constant distance, and |Σout | = O(1). In the following

claim, we obtain explicit binary lagged tree codes with a constant

distance, |Σout | = O(1), and depth that is quadratic in the lag.

Claim6.3. There exists a constant clag ≥ 1 such that for every integer

ℓ ≥ 1 there exists an explicit lagged tree code TCLagℓ : {0, 1}ℓ →
({0, 1}clag)ℓ with distance 1/3 and lag L = 16

√
ℓ. 4

Proof. For the construction of TCLagℓ we make use of the fol-

lowing building blocks:

• Let TC√
ℓ
:
(

{0, 1}
√
ℓ
)

√
ℓ

→
(

{0, 1}3
√
ℓ
)

√
ℓ

be the tree code

from Corollary 6.1. Recall that TC√
ℓ
has distance 1/2.

• Let ECC : {0, 1}3
√
ℓ → ({0, 1}clag)

√
ℓ be the error correct-

ing block code from Lemma 3.2 set with distance 5/6. By
Lemma 3.2, clag is a constant.

Letm ∈ {0, 1}ℓ . Partitionm to
√
ℓ consecutive blocks each con-

sisting of
√
ℓ bits, namely,m = (m1, . . . ,m√

ℓ
) wheremi ∈ {0, 1}

√
ℓ .

Similarly, for t ∈ [
√
ℓ], we write TCLagℓ(m)t for TCLagℓ(m) pro-

jected to the t ’th block, where each block consists of
√
ℓ elements

of {0, 1}clag . Formally, TCLagℓ(m)t = TCLagℓ(m)[(t−1)√ℓ+1,t√ℓ] ∈

4One can achieve distance 1/2 − ε for any constant ε > 0. This will effect the value

of the constant clag and the constant multiplying
√
ℓ in the lag L.

({0, 1}clag)
√
ℓ .We define TCLagℓ(m)1 = (0clag)

√
ℓ . For t ∈ {2, . . . ,

√
ℓ},

define

TCLagℓ(m)t = ECC
(

TC√
ℓ
(m)t−1

)

,

where we interpretm as an element of ({0, 1}
√
ℓ)
√
ℓ when passing

it to TC√
ℓ
.

Observe that TCLagℓ is online. We turn to show that TCLagℓ
has distance 1/3 and lag 16

√
ℓ. Let x ,y ∈ {0, 1}ℓ be distinct strings

with s = split(x ,y). Let d ∈ [16
√
ℓ, ℓ − s]. Let i1 ∈ [

√
ℓ] be the index

for which the blocks xi1 ,yi1 ∈ {0, 1}
√
ℓ contain the split s . That is,

i1 is the split of x ,y when interpreted as elements of ({0, 1}
√
ℓ)
√
ℓ .

Note that i1 = ⌊(s − 1)/
√
ℓ⌋ + 1. Set b = ⌊d/

√
ℓ⌋ − 1 and observe

that block numbers i1 + 1, . . . , i1 + b − 1 are all fully contained in

[s, s+d]. Hence, by construction, the codeword TCLagℓ(x) projected
to [s, s + d] contains

(

TCLagℓ(x)i1+1, . . . , TCLagℓ(x)i1+b−1
)

=

(

ECC
(

TC√
ℓ
(x)i1

)

, . . . , ECC
(

TC√
ℓ
(x)i1+b−2

))

as a substring. Similarly, the codeword TCLagℓ(y) projected to

[s, s + d] contains
(

TCLagℓ(y)i1+1, . . . , TCLagℓ(y)i1+b−1
)

=

(

ECC
(

TC√
ℓ
(y)i1

)

, . . . , ECC
(

TC√
ℓ
(y)i1+b−2

))

as a substring in the corresponding indices.

As TC√
ℓ
is a tree code with distance 1/2 and i1 is the split of

x ,y when considered as elements of ({0, 1}
√
ℓ)
√
ℓ , at least (b − 1)/2

of the indices i1, . . . , i1 + b − 2 are such that TC√
ℓ
(x)i , TC√

ℓ
(y)i .

As ECC has distance 5/6, each such index i contributes 5
√
ℓ/6 to

the total distance. Thus, the number of disagreements between

TCLagℓ(x), TCLagℓ(y) projected to [s, s + d] is bounded below by

b − 1

2
· 5
6

√
ℓ ≥ d

3
,

where the last inequality follows as d ≥ 16
√
ℓ. �

Let ℓ ≤ n be integers. Let clag be the constant from Claim 6.3.

Define the function TCLagn
ℓ
: {0, 1}n → ({0, 1}2clag)n as follows.

Let m ∈ {0, 1}n . Write m = (m1, . . . ,m2n/ℓ) 5 where each mi ∈
{0, 1}ℓ/2. For i = 1, . . . ,n/ℓ define

oi = TCLagℓ(m2i−1,m2i),
ei = TCLagℓ(m2i ,mmin(2i+1,2n/ℓ)).6

Note that each of oi , ei is an element of ({0, 1}clag)ℓ . Let ci = (oi , ei)
of which we think of as an element of ({0, 1}2clag)ℓ . Define

TCLagn
ℓ
(m) = (c1, c2, . . . , cn/ℓ).

Claim 6.4. Let x ,y be distinct n-bit strings and let s = split(x ,y).
Assume that s ≤ n − ℓ/2. Then, for every integer 16

√
ℓ ≤ d ≤ ℓ/2,

dist
(

TCLagn
ℓ
(x)[s,s+d], TCLagnℓ (y)[s,s+d]

)

≥ d/3.
5For the sake of clarity, we ignore issues of divisibility that can be easily handled.
6The minimum with 2n/ℓ is taken only to make sure that we do not go out of the
index set of the message.

541

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman

Proof. Let i ∈ [2n/ℓ] be the index of blocks xi ,yi that contain
the split s . Assume i is odd and let t = s − (i − 1)ℓ/2 be the index
within block i of the split. Then TCLagn

ℓ
(x)[s,s+d] contains, as a

substring, TCLagℓ(xi ,xi+1)[t,t+d], where we have used the fact

that t + d ≤ ℓ as implied by the hypothesis d ≤ ℓ/2 and since,

by construction, t ≤ ℓ/2. Similarly, TCLagn
ℓ
(y)[s,s+d] contains

TCLagℓ(yi ,yi+1)[t,t+d] in the corresponding indices. The proof

follows as TCLagℓ is a lagged tree code with distance 1/3 and lag

16
√
ℓ. A similar argument holds for even i’s. �

We are now ready to prove Theorem 1.1 (for distance δ = 1/3).

Proof of Theorem 1.1. First, observe that it suffices to con-

struct a lagged tree code with distance 1/3 and lag L = O(1). Such
a lagged tree code can be efficiently converted to a tree code with

distance 1/3 and only a constant overhead in alphabet size by in-

cluding the last L inputs in the encoding at any point of time. Set

j = log2 log2 n and define the sequence of integers ℓ1, . . . , ℓj recur-

sively as follows: ℓ1 = 220 and for i ≥ 1, ℓi+1 = ℓ
2
i /2

10. One can

verify that ℓi = 210(2
i−1
+1) and so for every integer 214 ≤ d ≤ n

there exists i ∈ [j] such that 16
√
ℓi ≤ d ≤ ℓi/2.

We define TC : {0, 1}n → Σ
n as follows. Let m ∈ {0, 1}n . For

i ∈ [j] define ti = TCLagn
ℓi
(m) ∈ ({0, 1}2clag)n . Define

TC(m) = (t1, t2, . . . , tj) ∈ ({0, 1}2clag j)n .

Note that Σ = {0, 1}2clag j is an alphabet of size (logn)O (1). TC is an

online function as each of the functions TCLagn
ℓ1
, . . . , TCLagn

ℓj
is

online. We turn to show that TC is a lagged tree code with lag 214

and distance 1/3. Let x ,y ∈ {0, 1}n be distinct with s = split(x ,y).
Let 214 ≤ d ≤ n − s . By the above, there exists i ∈ [j] such that

16
√
ℓi ≤ d ≤ ℓi/2. Hence, TCLagnℓi guarantees that the fraction of

disagreements between TC(x) and TC(y) projected to [s, s + d] is
at least 1/3. �

7 TREE CODES FOR ANY DISTANCE δ < 1

In this section we prove the following theorem which readily im-

plies Theorem 1.2.

Theorem 7.1. For every integer r ≥ 1 there exists an explicit tree

code TCr
Z
: ZN → (Zr+1)N with distance 1−1/(r +1). Further, for ev-

ery z = (zt)t ∈N ∈ ZN and t ∈ N, each of the r +1 integers in TCr
Z
(z)t

is bounded, in absolute value, by 2O (t 2r) ·max (|z0 |, . . . , |zt |) .

Proof. Let rN = {0, r , 2r , . . .} be the set of all natural numbers

that are divisible by r , and let r̄N = N \ rN. Formally, the tree code

TCr
Z
defined next has domain ZrN but, for ease of readability, we

identify ZrN with ZN in the natural way.

The construction of TCr
Z
. Define the function TCr

Z
: ZN → (Zr+1)N

as follows. Given z = (zt)t ∈rN, we define a sequence of real poly-
nomials (ft)t ∈N and a sequence of integers (zt)t ∈r̄N inductively

with respect to t ∈ N as follows:

(1) Define ftr to be the least degree real polynomial such that

∀i ∈ {0, 1, . . . , tr }, ftr (i) = zi .

(2) Define the real polynomials ftr+1, · · · , ftr+r−1 to equal ftr .

(3) For i = 1, . . . , r − 1, set ztr+i = ftr+i (tr + i).

By Lemma 3.8, there exists a sequence of integers (γi)i ∈N such

that for every t ∈ N, ft (x) =
∑t
i=0 γi

(x
i

)

. For t ∈ N, define

TCr
Z
(z)t = (γtr , ztr , ztr+1, ztr+r−1) .

Analysis. Observe that the γt ’s as well as zt for t ∈ r̄N are all

Z-linear combination of the input sequence (zt)t ∈rN, and so TCr
Z

is a linear function with range Zr+1. Further, TCr
Z
is online.

We turn to analyze the distance of TCr
Z
. As TCr

Z
is linear, it

suffices to consider a nonzero sequence z. Assume that c ∈ N is the

least integer such that zcr , 0. Let ℓ ≥ 0. Set t = c + ℓ and define

I = {c, c + 1, . . . , t}. Recall that ftr (x) =
∑tr
i=0 γi

(x
i

)

. By (2), γi = 0

for every i ∈ r̄N and so

ftr (x) =
t
∑

i=0

γir

(

x

ir

)

.

Denote the sparsity of ftr by s . Note that s of the γ -entries in

(TCr
Z
(z)i)i ∈I are nonzero. By Lemma 1.4, ftr has at most s − 1

roots in [cr ,∞) ∩ Z and, in particular, at most s − 1 roots among

{cr , cr + 1, . . . , tr + r − 1}. As the evaluation of ftr on these (ℓ+ 1)r
points appear as entries in (TCr

Z
(z)i)i ∈I , we have that at least

s + (ℓ + 1)r − (s − 1) = (ℓ + 1)r + 1

of the (ℓ + 1)(r + 1) integers in ((TCr
Z
)i)i ∈I are nonzero. Thus, at

least

(ℓ + 1)r + 1
r + 1

>

(

1 − 1

r + 1

)

(ℓ + 1)

of the indices i ∈ I are such that TCr
Z
(z)i is nonzero as an (r + 1)-

tuple, establishing the desired bound on the distance.

We turn to bound the output symbols. We start by bounding

the γ symbols. Recall that γi = 0 for every i not divisible by r .

For t ∈ N, let Γt = max (|γi | : i ∈ {0, 1, . . . , t}) and define mtr =

max (|zi | : i ∈ rN ∩ [0, tr]). By Lemma 3.8, for every t ≥ 1 we have

that

γtr =

tr
∑

i=0

(−1)tr−i
(

tr

i

)

zi

= ztr +

tr−1
∑

i=0

(−1)tr−i
(

tr

i

) i
∑

j=0

γj

(

i

j

)

,

and so

|γtr | ≤ |ztr | +
tr−1
∑

i=0

(

tr

i

) i
∑

j=0

|γj |
(

i

j

)

≤ |ztr | +
tr−1
∑

i=0

(

tr

i

)

Γi2
i

≤ |ztr | + Γtr−1
tr
∑

i=0

(

tr

i

)

2i

= |ztr | + 3tr Γtr−1.

As Γtr−1 = Γ(t−1)r and since, being an input symbol, |ztr | ≤ mtr ,

we have that Γtr ≤ 3tr Γ(t−1)r +mtr ,which implies Γtr ≤ mtr ·3t
2r .

542

Explicit Binary Tree Codes with Polylogarithmic Size Alphabet STOC’18, June 25–29, 2018, Los Angeles, CA, USA

As for the computed z values, by (2) and (3), for t ∈ N and

k ∈ {1, 2, . . . , r − 1},
ztr+k = ftr+k (tr + k)

= ftr (tr + k)

=

t
∑

i=0

γir

(

tr + k

ir

)

≤ mtr · 3t
2r · 2tr+k ,

which completes the proof of Theorem 7.1. �

Corollary 7.2. There exists a universal constant c ≥ 1 such that for

every ζ > 0 and every integer ℓ ≥ 1 there exists an explicit tree code

TCℓ :
(

{0, 1}ℓ2
)ℓ

→
(

{0, 1}
c

ζ 2
·ℓ2

)ℓ

with distance δ = 1 − ζ .

Proof. The tree code TCℓ is obtained by restricting TCr
Z
, set

with r = ⌈1/ζ ⌉, to its first ℓ coordinates where, as in the proof of

Corollary 6.1, for an integerb, we identify {0, 1}b with {0, 1, . . . , 2b−
1}. Note that the input symbols, when represented as integers, are

bounded by 2ℓ
2
. Therefore, by Theorem 7.1, there exists a universal

constant c ≥ 1 such that every output symbol is bounded in abso-

lute value by 2c(1/ζ)
2ℓ2 and so c(1/ζ)2ℓ2 bits suffice to represent the

output symbols of TCr
Z
. Clearly, TCℓ inherits the 1−1/(r+1) ≥ 1−ζ

distance bound from TCr
Z
. �

The reduction in Section 6, instantiated with Corollary 7.2 in-

stead of Corollary 6.1, and when executed with a suitable choice of

parameters, yields a binary tree code with distance δ = 1 − ζ and

alphabet size (logn)O (1/ζ 2).

A PROOF OF LEMMA 3.2

For the proof of Lemma 3.2, we make use of algebraic-geometric

codes.

Theorem A.1 ([18]. See also [51]). Let p be a prime number and

m ∈ N even. Set q = pm . For every 0 < ρ < 1 and a large enough

integer n, there exists an explicit rate ρ linear error correcting block

code ECC : Fnq → Fn/ρq with distance

δ ≥ 1 − ρ − 1
√
q − 1

.

Proof of Lemma 3.2. Let ℓ be the least integer such that 2ℓ ≥
2/ε+1 and letq = 22ℓ . Letm be the least integer such that 1/m ≤ ε/2.
By Theorem A.1, there exists an explicit error correcting block code

ECC′ : Fnq → F
mn
q with distance 1 − ε . Identify Fq = F22ℓ with

{0, 1}2ℓ by fixing a representation for Fq . Note that q = O(1/ε2) =
O(1) and so such a representation can be computed in constant

time. Set c = 2ℓtm. Define, ECC : {0, 1}n → ({0, 1}c)n/t as follows.
Given x ∈ {0, 1}n , identify x with an element of Fn2 ⊆ Fnq . For
i ∈ [n/t], define

ECC(x)i =
(

ECC′(x)(i−1)mt+1, ECC
′(x)(i−1)mt+2, . . . , ECC

′(x)imt

)

.

Note that c = O((t/ε) log(1/ε)).

Consider distinct x ,y ∈ {0, 1}n and, as before, identify {0, 1}n
with Fn2 ⊆ Fnq . Then, the codewords ECC′(x), ECC′(y) agree on at

most ε-fraction of the coordinates. This readily implies that ECC(x),
ECC(y) agree on at most ε-fraction of the coordinates. �

ACKNOWLEDGMENTS

Part of this work was done while the first author was a CMI Post-

doctoral Fellow at the California Institute of Technology. The sec-

ond author was supported in part by NSF grants CCF-1527110,

CCF-1618280 and NSF CAREER award CCF-1750808. The third au-

thor was supported in part by NSF grant 1618795; and part of the

work was done while he was in residence at the Israel Institute

for Advanced Studies, supported by a EURIAS Senior Fellowship

co-funded by the Marie Skłodowska-Curie Actions under the 7th

Framework Programme. The second author thanks Noga Ron-Zewi

and Shachar Lovett for many helpful discussions.

REFERENCES
[1] Shweta Agrawal, Ran Gelles, and Amit Sahai. 2016. Adaptive Protocols for

Interactive Communication. IEEE International Symposium on Information Theory
(ISIT) (2016), 595ś599.

[2] M. Aigner. 2007. A course in enumeration. Springer.
[3] M. Aigner and G. Ziegler. 2010. Proofs from the Book (4th ed.). Springer.
[4] Noga Alon, Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Hae-

upler. 2016. Reliable Communication over Highly Connected Noisy Networks.
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC)
61 (2016).

[5] Zvika Brakerski and Yael Tauman Kalai. 2012. Efficient Interactive Coding against
Adversarial Noise. Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS) (2012), 160ś166.

[6] Zvika Brakerski, Yael Tauman Kalai, andMoni Naor. 2014. Fast Interactive Coding
Against Adversarial Noise. Journal of the ACM (JACM) 61, 6, Article 35 (2014),
35:1ś35:30 pages.

[7] Zvika Brakerski and Moni Naor. 2013. Fast Algorithms for Interactive Coding. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA). 443ś
456.

[8] Mark Braverman. 2012. Towards deterministic tree code constructions. In Proceed-
ings of the ACM-SIGACT Innovations in Theoretical Computer Science Conference
(ITCS). 161ś167.

[9] Mark Braverman and Klim Efremenko. 2014. List and Unique Coding for Interac-
tive Communication in the Presence of Adversarial Noise. In Proceedings of the
IEEE Symposium on Foundations of Computer Science (FOCS). 236ś245.

[10] Mark Braverman, Ran Gelles, JiemingMao, and Rafail Ostrovsky. 2017. Coding for
interactive communication correcting insertions and deletions. IEEE Transactions
on Information Theory 63, 10 (2017), 6256ś6270.

[11] M. Braverman and A. Rao. 2014. Toward Coding for Maximum Errors in Inter-
active Communication. IEEE Transactions on Information Theory 60, 11 (2014),
7248ś7255.

[12] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. 2013. De-
terministic algorithms for the Lovász local lemma. SIAM J. Comput. 42, 6 (2013),
2132ś2155.

[13] G. Cohen, A. Shpilka, and A. Tal. 2011. On the degree of univariate polynomials
over the integers. In Electronic Colloquium on Computational Complexity (ECCC).

[14] Yevgeniy Dodis and Allison Bishop Lewko. 2016. Interactive Coding for Inter-
active Proofs. International Theory of Cryptography Conference (TCC) (2016),
352ś366.

[15] Andrew Drucker. 2011. Efficient probabilistically checkable debates. In Proceed-
ings of the International Workshop on Randomization and Computation (RANDOM).
519ś529.

[16] P. Erdös and L. Lovász. 1975. Problems and results on 3-chromatic hypergraphs
and some related questions. In Infinite and Finite Sets. North Holland.

[17] Matthew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard J. Schulman. 2015.
Optimal Coding for Streaming Authentication and Interactive Communication.
IEEE Transactions on Information Theory 61, 1 (2015), 133ś145.

[18] A. Garcia and H. Stichtenoth. 1995. A tower of Artin-Schreier extensions of
function fields attaining the Drinfeld-Vladut bound. Inventiones Mathematicae
121, 1 (1995), 211ś222.

[19] Ran Gelles. 2017. Coding for Interactive Communication: A Survey. Foundations
and Trends in Theoretical Computer Science 13, 1-2 (2017), 1ś157. https://doi.org/
10.1561/0400000079

543

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman

[20] Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson.
2016. Towards optimal deterministic coding for interactive communication. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA). 1922ś
1936.

[21] Ran Gelles, Ankur Moitra, and Amit Sahai. 2014. Efficient Coding for Interactive
Communication. IEEE Transactions on Information Theory 60, 3 (2014), 1899ś1913.

[22] I. Gessel and G. Viennot. 1985. Binomial determinants, paths, and hook length
formulae. Advances in Mathematics 58, 3 (1985), 300ś321.

[23] Mohsen Ghaffari and Bernhard Haeupler. 2014. Optimal Error Rates for Interac-
tive Coding II: Efficiency and List Decoding. In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS). 394ś403.

[24] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. 2014. Optimal Error
Rates for Interactive Coding I: Adaptivity and Other Settings. In Proceedings of
the ACM Symposium on Theory of Computing (STOC). 794ś803.

[25] Leefke Grosjean. 2016. Practical anytime codes. Ph.D. Dissertation. KTH Royal
Institute of Technology.

[26] Bernhard Haeupler. 2014. Interactive Channel Capacity Revisited. In Proceedings
of the IEEE Symposium on Foundations of Computer Science (FOCS). 226ś235.

[27] B. Haeupler and A. Shahrasbi. 2017. Synchronization Strings: Codes for Insertions
and Deletions Approaching the Singleton Bound. ACM Symposium on Theory of
Computing (STOC) (2017).

[28] B. Haeupler and A. Shahrasbi. 2018. Synchronization Strings: Explicit Con-
structions, Local Decoding, and Applications. ACM Symposium on Theory of
Computing (STOC) (2018).

[29] B. Haeupler, A. Shahrasbi, and E. Vitercik. 2017. Synchronization Strings: Channel
Simulations and Interactive Coding for Insertions and Deletions. arXiv:1707.04233
(2017).

[30] Bernhard Haeupler and Ameya Velingker. 2017. Bridging the capacity gap
between interactive and one-way communication. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA). 2123ś2142.

[31] Abhishek Jain, Yael Tauman Kalai, and Allison Bishop Lewko. 2015. Interac-
tive Coding for Multiparty Protocols. In Proceedings of the ACM Innovations in
Theoretical Computer Science Conference (ITCS). 1ś10.

[32] Anatoly Khina, Wael Halbawi, and Babak Hassibi. 2016. (Almost) practical tree
codes. In Proceedings of the IEEE International Symposium on Information Theory
(ISIT). 2404ś2408.

[33] Gillat Kol and Ran Raz. 2013. Interactive channel capacity. In Proceedings of the
ACM Symposium on Theory of Computing (STOC). 715ś724.

[34] James R. Lee, Arnaud de Mesmay, and Mohammad Moharrami. 2012. Dimension
reduction for finite trees in L1 . In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA). 43ś50.

[35] Allison Lewko and Ellen Vitercik. 2015. Balancing Communication for Multi-
party Interactive Coding. CoRR abs/1503.06381 (2015).

[36] B. Lindström. 1973. On the vector representations of induced matroids. Bulletin
of the London Mathematical Society 5, 1 (1973), 85ś90.

[37] Cristopher Moore and Leonard J. Schulman. 2014. Tree codes and a conjecture on
exponential sums. In Proceedings of the ACM-SIGACT Innovations in Theoretical

Computer Science Conference (ITCS). 145ś154.
[38] Robin A Moser and Gábor Tardos. 2010. A constructive proof of the general

Lovász local lemma. Journal of the ACM (JACM) 57, 2 (2010), 11.
[39] R. Ostrovsky, Y. Rabani, and L. J. Schulman. 2009. Error-correcting codes for

automatic control. IEEE Trans. Information Theory 55, 7 (2009), 2931ś2941.
[40] Marcin Peczarski. 2006. An improvement of the tree code construction. Informa-

tion Processing Letters (IPL) 99, 3 (2006), 92ś95.
[41] Pavel Pudlák. 2016. Linear tree codes and the problem of explicit constructions.

Linear Algebra Appl. 490 (2016), 124ś144.
[42] Sridhar Rajagopalan and Leonard J. Schulman. 1994. A coding theorem for

distributed computation. In Proceedings of the ACM Symposium on Theory of
Computing (STOC). 790ś799.

[43] Anant Sahai. 2001. Anytime information theory. Ph.D. Dissertation. Massachusetts
Institute of Technology.

[44] Anant Sahai. 2004. The necessity and sufficiency of anytime capacity for control
over a noisy communication link. In Proceedings of the IEEE Conference on Decision
and Control, Vol. 2. 1896ś1901.

[45] Anant Sahai and Sanjoy Mitter. 2006. The Necessity and Sufficiency of Anytime
Capacity for Stabilization of a Linear System Over a Noisy Communication Link.
IEEE Transactions on Information Theory (TransInf) 52, 8 (2006), 3369ś3395.

[46] Leonard J. Schulman. 1993. Deterministic coding for interactive communication.
In Proceedings of the ACM Symposium on Theory of Computing (STOC). 747ś756.

[47] Leonard J. Schulman. 1994. Postscript of 21 September 2003 to Coding for
Interactive Communication. (1994). http://users.cms.caltech.edu/ ∼schulman/
Papers/ intercodingpostscript.txt.

[48] Leonard J. Schulman. 1996. Coding for interactive communication. IEEE Trans-
actions on Information Theory 42, 6 (1996), 1745ś1756.

[49] Alexander A. Sherstov and Pei Wu. 2017. Optimal Interactive Coding for In-
sertions, Deletions, and Substitutions. In IEEE Symposium on Foundations of
Computer Science (FOCS).

[50] Amir Shpilka and Avishay Tal. 2011. On the minimal fourier degree of symmet-
ric boolean functions. In 2011 IEEE 26th Annual Conference on Computational
Complexity (CCC). IEEE, 200ś209.

[51] H. Stichtenoth. 2009. Algebraic function fields and codes. Vol. 254. Springer Science
& Business Media.

[52] Ravi Teja Sukhavasi and Babak Hassibi. 2011. Anytime reliable codes for sta-
bilizing plants over erasure channels. In Proceedings of the IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC). 5254ś5259.

[53] Ravi Teja Sukhavasi and Babak Hassibi. 2011. Linear error correcting codes
with anytime reliability. In Proceedings of the IEEE International Symposium on
Information Theory (ISIT). 1748ś1752.

[54] Joachim von Zur Gathen and James R Roche. 1997. Polynomials with two values.
Combinatorica 17, 3 (1997), 345ś362.

[55] A. Wigderson. 2017. Mathematics and Computation. Book draft.

544

	Abstract
	1 Introduction
	1.1 Our Results

	2 Overview of the Construction
	2.1 The Combinatorial Perspective
	2.2 The Algebraic Perspective
	2.3 Tree Codes for any Distance < 1

	3 Preliminaries
	3.1 Error Correcting Block Codes
	3.2 Tree Codes
	3.3 The Newton Basis
	3.4 The Gessel-Viennot Lemma

	4 A Bound on the Number of Integral Roots via Sparsity
	5 Infinite Tree Codes over the Integers
	6 Binary Tree Codes with Polylogarithmic Size Alphabet
	7 Tree Codes for any Distance < 1
	A Proof of Lemma 3.2
	References

